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Abstract—In light of increasing interest in detection of con-
cealed metallic weapons, there is a great need to have robust
and non-obtrusive metal detection systems with large coverage
areas. Conventional systems based on electromagnetic induction
or X-rays are effective, but have small coverage areas in addition
to requiring costly infrastructure. In this paper, we explore
the use of ubiquitously present WiFi signals for non-obtrusive
detection of concealed metal objects. For the purpose, we build a
prototype system consisting of a single-antenna commodity WiFi
radio as a transmitter, and two multi-antenna radios as receivers
placed in an indoor environment of approximately 42 ft × 39 ft.
We conduct extensive experiments with subjects walking through
the setup with (or without) a sheet of metal placed around their
chests. We use the channel state-information collected from the
receivers to train a deep convolutional neural network, and find
that the proposed system can differentiate between the metal and
non-metal cases with an average accuracy of 86.44%.

Index Terms—WiFi Sensing, Metal Detection, Deep Neural
Network, Weapon Detection, CSI

I. INTRODUCTION

Metal detectors have become essential for ensuring se-
curity at airports, military headquarters, courthouses, pris-
ons, schools, parks, and even offices. Additional applications
include geophysical prospecting, land-mine detection, trea-
sure hunting, detection of metallic objects/pipes/wires buried
underground or inside walls [1], and detection of metal-
contaminated food before packaging [2].

Metal detectors usually exist in the form of hand-held
devices or walk-through gates, and are mostly based on
electromagnetic induction. Another widely used technique
for metal detection is X-ray imaging. Since, electromagnetic
radiations cannot pass through metallic objects, illumination
by X-rays shows a metallic object as a deep shadow in the
reflected energy image [3]. However, since exposure to X-rays
can have adverse effects on human health, the use of X-rays
in crowded areas is not a good option for metal detection.
Another emerging alternative is the use of near-field imaging
methods based on non-ionizing radiation including active and
passive sensing techniques [4]. Passive imaging techniques
such as infrared and passive millimeter wave (mmW) imaging
suffer from low resolution and higher noise effects which
lead to blurry imaging [5]. On the other hand, active mmW
imaging is attractive due to its high quality and high resolution
[6]. Although these conventional metal detection systems have
proved to be effective, they have a major drawback. They

usually have limited coverage and therefore require subjects
to pass through them one at a time, creating bottlenecks
at crowded locations. In addition, majority of these systems
require installation of costly specialized infrastructure.

In light of the drawbacks mentioned above, there is a need
for expedited security screenings using low-cost non-obtrusive
metal detection systems that have wide coverage areas. In
this paper, we explore the use of an unconventional approach
that utilizes ubiquitously present WiFi radio signals for low-
cost non-obtrusive detection of concealed metal objects on a
person. As unconventional as it may sound, the utility of these
radio signals for metal detection is not far-fetched. Indeed,
radio signals reflect differently from a metallic object than they
do from non-metallic material. As a result, the premise of our
proposed solution is that the presence of a metallic object in
the path of radio signals creates specific patterns in received
channel state information (CSI); patterns that could then be
identified for effective classification. Relying on this premise,
we build a prototype system that illuminates targets with an
off-the-shelf Intel 5300 WiFi radio connected to a directional
horn-antenna. As receivers, the system uses the same off-the-
shelf multi-antenna radios placed nearby as shown in Fig. 1.
To the best of our knowledge, the only work in existing
literature to have dealt with metal detection using WiFi is
[7]. However, the system in [7] requires that the subject
remain stationary while being “scanned” - the robustness of
the system while the subject is moving was not tested. As
opposed to [7], our proposed framework is based on the vision
in which no “cooperation” from the target is expected. More
precisely, using WiFi radios, we attempt metal detection on a
person who moves through the illumination area at regular
walking speeds. For increasing the likelihood of accurate
detection despite the diffuse reflections and randomly varying
artifacts caused by target motion, we rely on signal diversity by
employing two multi-antenna receivers. We conduct extensive
experiments with subjects walking through the illumination
area either without or with a metal sheet placed near their
chests. Using the corresponding CSI collected from the two
receiving nodes as training data, we use a deep convolutional
neural network (CNN) for differentiating between the two
cases. Using a 10-fold cross validation over data from 459
experiments and four different subjects, the average accuracy
of the proposed approach is found to be 86.44%. While there
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Fig. 1. An illustration of the proposed system

remains several aspects that need to be explored further, the
preliminary experimental results we report in this paper point
to the promise of WiFi radios as a means towards full-fledged
low-cost systems for non-obtrusive detection of concealed
metal objects.

The remainder of the paper is organized as follows. In
Section II, we provide a description of the proposed system for
metal detection using WiFi radios. In Section III, we discuss,
through our experimental observations, how the presence of a
metal object in the illumination area affects the receive CSI as
well as details of the classification algorithm we utilize when
the target is in motion. Section IV presents the details of our
experimental setup, as well as the classification results, while
Section V concludes the paper.

II. PROPOSED SYSTEM FOR CONCEALED METAL
DETECTION

The main idea of the proposed framework is to detect the
concealed metallic object on a human subject by recording and
processing the changes in CSI amplitude. Fig. 1 illustrates
the proposed setup with one transmitting node illuminating
a spatial region by directing its energy in a narrow beam
using a directional horn antenna. As a subject walks through
this region, two receiving nodes1, each equipped with three
omnidirectional antennas, collect the reflected energy from the
person’s body. The received signal is used to extract CSI, with
a CNN used for classification purposes. In the following, we
provide an overview of what the CSI corresponds to in the
context of our system, followed by a description of how it is
pre-processed before being input to a CNN.

A. CSI and Metal Detection

WiFi (IEEE 802.11 a/g/n) utilizes orthogonal frequency
division multiplexing (OFDM) with data transmitted over mul-
tiple sub-bands to combat frequency selective fading. Loosely

1We believe that the system’s accuracy could be improved by using
more receivers. However, for proof-of-concept demonstrations reported in this
paper, two receivers suffice.

speaking, the CSI captures the channel characteristics of the
individual sub-bands in the form of complex numbers. More
precisely, if x is a length-M vector of transmitted symbols
(one for each sub-band), the received vector y over the M
sub-bands can be written as

y = Hx + n, (1)

where n is additive White Gaussian noise vector and H is a
diagonal matrix with the element-i on the diagonal represent-
ing the complex channel response associated with sub-band-i.
This element-i is given as

Hi =
K∑
k=1

rke
−j2πFiτk = |Hi|ejθi , (2)

where K represents total number of multipath components,
Fi is the sub-carrier frequency, rk is the attenuation and τk
is the propagation delay of k-th path respectively; |Hi| and
θi correspond to the magnitude and phase of Hi, respec-
tively. This fine grained CSI information (estimated through
training symbols) corresponding to the wireless channel is
now accessible in many commercially available off-the-shelf
WiFi devices. The basic premise behind detecting concealed
metallic objects using WiFi radios is that the presence of
metal introduces changes in the received signal which can
then be detected and differentiated from non-metal cases. In
order to detect the changes in received signal, one can either
rely on the Received Signal Strength (RSS) or the CSI. RSS
has severe variations especially during target motion and Non-
Line-Of-Sight (NLOS) conditions. On the other hand, CSI
information has been shown to be a more stable and accurate
representation of the wireless channel especially in the case of
NLOS conditions with small scale fading components [8]. As
a result, we utilize the CSI information for detecting changes
in received signal properties.

Out of 56 data subcarriers for data transmission over a 20
MHz bandwidth channel used by WiFi radios, we can access
30 subcarrier CSI information using firmware modifications
[9]. Extracted CSI contains the information of Hi at the
symbol rate for 30 subcarriers. Over the years, researchers
have exploited the rich contextual information available in the
CSI for a number of applications such as human activity recog-
nition [10], vital signs monitoring [11], gesture recognition
[12] , keyboard stroke recognition [13], gait recognition [14],
intrusion detection [15] and human identity detection [16]. For
our work, we focus on the use of CSI magnitudes |Hi| for the
detection of concealed metallic object on a subject.

B. CSI Preprocessing

Since each one of the two receiving nodes is equipped with
three antennas, there are six receive antennas in total. The
CSI stream corresponding to each antenna was pre-processed
to extract information corresponding to target motion only.
After removing the initial and final transients, a stream of
5000 epochs was obtained, with each epoch corresponding
to a single packet index (the transmit duration corresponding



Fig. 2. Format of concatenated CSI data.

Fig. 3. Effect of metal on CSI amplitude and inter-carrier variance. The
figures on the top display the CSI amplitude on the 30 measured sub-carriers.

to each packet was 1 ms, so this corresponds to a recording
window of five seconds). This truncated stream is then passed
through a Gaussian moving average filter to remove high
frequency noise. Next, we use a non-overlapping window
of size 20 to average the adjacent CSI recordings, thereby
reducing 5000 recordings down to only 250 for each CSI
stream. Reduced dimensionality helps in compressing the
data and reducing the computational load associated with
subsequent classification stage. To use the full potential of
antenna diversity and fine-grained resolution provided by CSI
subcarriers, we concatenate CSI data from all antennas of
the two receiving nodes as shown in Fig. 2. Finally, we
obtain a CSI matrix of size 250 × 180 for each experiment
where 250 corresponds to total number of CSI recordings and
180 corresponds to the subcarrier dimension (six antennas ×
30 subcarriers). We use this matrix as an input for feature
extraction as explained in Section III-C.

Fig. 4. Distribution of µ[p] - Static Case

III. CLASSIFICATION

In order to illustrate the effect of presence of metal in
the illumination area, we first performed experiments with
a stationary human target. For this case, we were able to
clearly identify features in the received CSI stream that can
draw a distinction between the presence and absence of metal.
Next, we performed experiments with the target in motion.
Since identification of differentiable shallow features in this
case appears harder, we utilize a deep CNN for classification
purposes. In the following, we first present our preliminary
results with static subjects that provide useful insights into
the effect of metal on radio signals. Next, we describe the
challenges associated with a target in motion followed by a
description of the deep CNN used for classification.

A. Static Target

For illustration purposes, we provide in Fig. 3 a sample of
a single-antenna CSI stream for the two classes. The figures
show a clear visual distinction between the two cases. In
order to identify quantitative features for classification, we
investigate the following two.

• Average CSI amplitude:

µ[p] =
1

M

M∑
i=1

|Hi[p]|. (3)

Fig. 5. Distribution of σ2[p] - Static Case



Fig. 6. PDF of σ2[p] - Target in Motion

• Inter-carrier variance:

σ2[p] =
1

M − 1

M∑
i=1

[|Hi[p]| − µ[p]]2 , (4)

where p indicates packet index, M total number of subcarriers
and |Hi[p]| is the CSI magnitude for i-th subcarrier at packet
index p. Fig. 3 also indicates σ2[p] which is clearly distin-
guishable between metal and non-metal cases. To elucidate the
distribution of these features, we plot in Figs. 4–5 the prob-
ability density function (PDF) associated with these features
after fitting a normal curve to their histograms obtained from a
total of 10,0000 measurements. While average CSI amplitude
appears to be a reasonable measure, the inter-carrier variance
σ2[p] is much more promising2. From Fig. 3, we note that
σ2[p] in the presence of metal is smaller as compared to the
one in its absence. A possible reason behind this is that a metal
surface acts as a perfect reflector for radio frequency energy
which makes reflections less diffusive. This is opposed to the
absence of metal where the reflections arrive from the more
diffusive stationary human body.

B. Moving Target

Contrary to the static cases, target motion along a pre-
defined trajectory also induces motion artifacts in received
CSI. As a result, the previously investigated features µ[p] and
σ2[p] no longer remain reliable features. For instance, the fitted
normal PDF associated with σ2[p] in Fig. 6 clearly shows a
significant overlap between both classes, and hence may not
serve as a reliable measure for classification when the target
is in motion. Instead of manually identifying a better set of
features, we resort to utilizing a CNN for recognizing the
hidden patterns induced in CSI due to the presence of metallic
objects.

C. Deep CNN

Our deep CNN architecture consist of multiple layers: input
layer, hidden layer(s) and output layer. We have used one
convolutional layer followed by one max pooling layer. In
the classification stage, two fully connected hidden layers and

2Although the PDFs have been depicted for an illustrative example, we
point out that similar trend was observed on the remaining data sets as well.

a final output layer with softmax activation are used. When
fed with the input data, the architecture is able to discover
intricate and disguised patterns in the data thus finding and
evaluating distinct features to be used inside the classification
stage. Fig. 7 indicates the complete signal processing chain
along with the deep CNN architecture we use. The first layer of
CNN is a 2D convolutional layer with input shape of 250×180
followed by a 2D max pooling layer. After that, the data was
flattened, and two hidden layers were used with 200 and 100
nodes respectively finally followed by the output layer. The
parameters were modified such that training a model did not
take exorbitant amounts of time. The details of the model are
shown in Fig. 8.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

A. Experimental Setup

We prototyped our system using three Intel NUC
(D54250WKH) boards equipped with Intel 5300 WiFi radios;
the experimental setup is depicted in Fig. 9. One board acts
as a transmitter and other two serve as receivers that are
placed at 45◦ on either side of transmitting node. WiFi radio
of the transmitting node is connected to a pyramidal horn
antenna having ∼9dBi gain and 60◦ Half Power BeamWidth.
On the other hand, each receiving node is connected to three
omnidirectional antennas. To avoid interference related issues,
we use 5 GHz frequency band because it is relatively less
congested as compared to the crowded 2.4 GHz band. Channel
36 with 5.18 GHz center frequency having a bandwidth of 20
MHz is selected for CSI acquisition.

Experiments were conducted in an indoor environment that
was effectively a hall of dimensions 42 ft × 39 ft. Receiver
nodes are placed approximately 11.5 ft from the transmitter
node. The duration of each experiment was set to around
10 seconds which involves a human subject approaching
the transmitter node from a fixed position and stopping at
another pre-defined position close to the transmitter. The
distance between these two points was approximately 17 ft. We
performed two types of experiments. In the first case, subjects
approach the transmitter node without holding any metallic
object, and in the second case, they carry a metallic aluminum
sheet of dimensions 1 ft × 1 ft. We collected the data over
multiple days with little environmental variation. Four people
having different heights and body masses volunteered for
our experiments. Multiple targets also help in accounting for
different walking patterns, adding to the robustness of the
system. In our setup, the transmitter is configured to send
802.11n compliant WiFi packets with 1 ms inter-packet delay.
Packets are received at receiving nodes simultaneously after
bouncing off the moving subject. At the receiver nodes, CSI
is estimated and extracted for preprocessing.

B. Results and Evaluation

In total, we conducted 459 experiments with almost no
differences in experimental setup for four people with and
without metal sheet. The walking pace and angles for all
subjects were kept almost the same with natural variations



Fig. 7. CSI processing and classification chain.

Fig. 8. CNN model description.

only. The CSI data collected in these experiments were pre-
processed and passed to CNN architecture for classification,
with both the preprocessing and classification taking less than
three seconds on the Intel NUC boards. The CNN model was
trained and tested with 10-fold cross validation with around
500 epochs for convergence. As it is clear from Fig. 10 and
Fig. 11, the validation accuracy and loss stabilized before
150 epochs. Fig. 12 shows the overall classification results
producing an average testing accuracy of 86.44%.

C. Discussion

Experimental results presented in the previous sub-section
show a great potential of using the proposed metal detection
framework based on WiFi radios. An accuracy of 86.44% is
achieved which further might be improved by designing a
more robust classification stage. However, in all the experi-
ments that we conducted, we have not checked the robustness
of the system against certain parameters. As an example, all
the experiments have been conducted with a single metal sheet.
Also, during each experiment, there was only one target human
either static or in motion. The system still needs to be tested

Fig. 9. The experimental setup.



Fig. 10. CNN model accuracy probability.

Fig. 11. CNN model loss probability.

and validated against such variations and uncertainties before
a working deployable prototype is ready. Nevertheless, the
preliminary results reported above point to the promise of
using WiFi radios for non-obtrusive metal detection systems.

V. CONCLUSION

We have explored the use of commodity WiFi radios for
developing a non-obtrusive system for concealed metallic
object detection. By collecting data in an experimental setup
where the subjects were asked to move through the setup
with a concealed metallic object, we have demonstrated the
effectiveness of the framework with a deep CNN classifier
achieving an average accuracy of 86.44%. The robustness
of the proposed system has been increased by deploying a
number of receivers which simultaneously collect the reflected
energy from the metallic object. Compared with previous
systems, WiFi based metallic object detection systems, as
proposed in this paper, have the potential to significantly
increase the coverage area without requiring subjects to pass
through a narrowly localized path. In the future, work will
be extended to include detection of metallic objects carried
by multiple persons along with more elaborate testing and
experimental setup.

Fig. 12. Confusion matrix for the classification results probability.
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