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Abstract—Fault diagnosis in industrial facilities has tradi-
tionally been done using rule-based approaches, heuristics or
expert-knowledge. Bayesian network provides a flexible and
data-driven alternative that can reason under uncertainty. Most
of the data being generated by sensors in industrial setups
are continuous and the underlying data-generating models are
essentially non-linear. This paper employs Bayesian network and
proposes a framework that learns parameters of probability
density functions of a continuous Bayesian network using neural
network/s without requiring assumption of linear Gaussian model
or discretization of continuous data. Moreover, an expression of
probability query using learned parametric density functions and
causal-inference based mathematical formulation of two tasks
related to fault diagnosis —in the context of industrial plants—
namely root-cause-analysis and identification of most-influential-
path in Bayesian network have been provided.

Index Terms—RCA, Bayesian network, parameter estimation,
causal inference, neural network

I. INTRODUCTION

Bayesian network (BN) — a type of probabilistic graphical
model — is a simple and yet very powerful tool for reasoning
under uncertainty. There are numerous practical applications
of BN especially in genomics [1], software troubleshooting
[2], prognosis and diagnosis of faults [3] and diseases [4] to
name a few.

Our prime motivation for this work comes from root-cause-
analysis (RCA) of faults and identification of most-influential-
path (MIP) in industrial manufacturing plants. RCA is a
process in which primary cause or reason of failure mode
of an industrial plant is identified. The failure modes include,
but not restricted to, equipment breakdowns in production-line,
defects in the final product and lower quality of manufactured
output. On a production-floor of an industrial plant, there may
be multiple paths' from root-cause location to the point where
failure is detected. To prioritize the debugging process, plant
maintainers are usually interested in finding a path, from root-
cause node to failure detection point, that has maximum con-
tribution in creating faulty product i.e. MIP. Identification of
MIP helps plant maintainers/technicians to fix the anomalous
parts of production line, having highest contribution in creating

'Here path refers to a particular sequence of machines/instruments in an
assembly/production line of an industrial plant.
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defective output, with priority so that plant may be brought
into normal operating condition as early as possible.

Traditionally, RCA and identification of MIP are performed
by on-site engineers/technicians using expert knowledge. This
manual procedure takes a lot of time in complex situations
and is prone to mistakes due to experts' own biases. A more
than expected downtime of plant can result in huge losses.
For instance, “one minute of downtime of an automotive
manufacturing plant can incur USD 30,000 in operational
expenses” [5]. Secondly, it is humanly impossible to be aware
of every process and take advantage of huge data, produced by
sensors monitoring the industrial plant, by just visualization.
Therefore, it is quintessential to have a data-driven algorithm
that performs fully-automatic RCA, identifies MIP and
provides interpretable insights in a minimum of time after
fault detection.

We model machines/instruments (along with their inter-
connections) of an industrial facility with a continuous®
Bayesian network (CBN). To perform RCA and identify MIP
in an industrial plant, we use synthetic data generated by
nodes/sensors, structure of CBN and causal inference (details
can be found in §II-D and §II-E).

After discovering the structure of a CBN, parameters of condi-
tional probability density functions (PDFs) are estimated using
an appropriate method. In general, parameter estimation of a
non-linear> CBN is a challenging task. Most of the existing
related literature tackles the problem of parameter estimation
of CBN in two ways: (i) discretize the continuous data and
convert CBN into discrete one, (ii) assume linear Gaussian
model (LGM) for CBN [6]—[8]. There are certain disadvan-
tages associated with these two approaches. Firstly, discretiza-
tion of continuous data entails loss of information and requires
fine bins/levels for reliable estimation of marginal/conditional
distributions. Discretization with more number of bins/levels
increases the size* of conditional probability tables(CPTs)
which in turn increases the computational load on inference
algorithm and slows down the decision making. Moreover,

2In continuous Bayesian network, all nodes/random-variables are assumed
to be continuous.

3non-linear relationship between a child node and its parents

“the number of parameters in marginal/conditional distributions



it requires huge amount of data to accurately estimate CPT
of a child node having large number of parents. Secondly,
LGM assumption is very restrictive and it fails to capture non-
Gaussian distributions and non-linear relationship between a
child node and its parents (which is often the case in real-world
situations). Therefore, it is preferable to have a method for
parameter estimation that directly operates on continuous data,
learns parametric PDFs and does not require discretization or
LGM assumption.

A Bayesian network factorizes joint distribution into
product of uni-variate distributions which can later be used
to compute different probability queries i.e. to perform
probabilistic inference. In general, time complexity of exact
inference methods in graphical models is NP-hard [9]. A
general approach is to draw samples from a distribution
and obtain an approximate answer of probability query [8].
Inference methods for a continuous and linear Gaussian
Bayesian network are well established, however, a non-
linear and non-Gaussian continuous Bayesian network poses
challenges for inference [10]. There are a number multi-
variate probability density functions for which there is no
closed-form expression to evaluate high dimensional integrals
, thus making exact inference difficult.

We assume a non-linear and continuous Bayesian network
(CBN) with known structure and offer following contributions
in this paper;

« Parameter learning in a CBN without either discretization

of data or linear Gaussian assumption

« Adaptation of two simple methods for parameter learning

in CBN with multiple fully-connected neural networks or
single masked neural network

o A method for approximate inference involving learned

multi-modal logistic PDFs and Monte Carlo

e Mathematical formulation and demonstration of RCA

and identification of MIP in CBN using causal inference

Rest of the paper is organized as follows: §II-A gives intro-
duction of Bayesian network, §II-B and §II-C mathematically
formulate parameter learning and inference query respectively.
Formal description of RCA and MIP using Bayesian network
and causal-inference is given §II-D and §II-E respectively.
Two simple methods to learn parameters of a CBN using
neural network/s have been given in §III. A concise answer—
derived using learned parametric PDFs and sampling method—
of inference query can be found in §IV. Finally, results are
presented in §V.

II. PRELIMINARIES
A. Bayesian Network

A Bayesian network G(V, E) is a directed acyclic graph
in which V is a set of nodes and E is a set of ordered
pairs of nodes representing directed edges. Each node v; € V
is associated with a corresponding random variable X; and
ei,j = (vi,v;) € E represents a directed edge from node v;

to node v; i.e. (v; — v;). Assuming there are N continuous
nodes in G, the set of random variables associated with nodes
is X = {X1,Xs,..., Xy} We will use same notation for a
node and the corresponding random variable i.e. X;.

Let f(Xi1,Xo,...,XN;0) be a joint probability density
function (PDF) —parameterized by 6- of nodes/random-
variables in G and assuming that joint PDF f() is Markov
relative [11] to G, one can factorize joint PDF according to
following equation;

N
F(X1, X2, ..., Xn;0) = [[ £(X: | pa(Xi) ;6:) M
i=1

where pa(X;) is a set’ containing the parents of node X; in
G. f(X; | pa(X;)) is uni-variate conditional PDF of node X;
given its parents and it is parameterized by 6;. 6 = {0,} ;.

Assume D independent realizations of each node in G,
collectively denoted as D = { X1, X® X))} where
X (@) denotes jy sample vector containing values of all N
nodes/random-variables ie. X0 = [X) x . x{].
Maximum likelihood estimate (MLE) of Bayesian network G's
parameters can be written as;

D
6 = argmax £(0; D) = argmax H f(X90) ()
0 9 .
j=1
where L is likelihood function, 8 contains parameters of £ and

f() denotes joint probability density function over N nodes
in G. Using (1) and (2), one can show that;

N D
0= argmin—Zlog Hf(Xi(j) | pa(Xi(j)) ; 0;)
[’ ) .
=1 j=1
N
= argmin—Zlog L; (Oi ; Xi | pa(Xi)) &)
o i=1

where £; is local likelihood function associated with node
X, and pa(Xi(j )) denotes the values of parents of X; in jy
observation/sample of D. Equation (3) suggests that 6 can
be obtained by optimizing each local negative log-likelihood
independently.

In this paper, we take mixture-of-logistic (MoL) for
marginal and conditional PDFs as it is very flexible to rep-
resent wide range of distribution shapes (see Fig. 1) and
has closed-form expression of cumulative distribution function
(CDF) [12].

M

m=1

where 0; = {wilml, fti[ml, ifm]} iy and (wifml, fi[m], si(m))
represent (weight, mean and scale) of mgy component of
mixture. It must be noted that 8; is a function of the values
of pa(X;) and we have opted not to use superscript j with 6;
for simplicity.

SDepending upon the context, it may also represent values assigned to the
parents of node X;
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Fig. 1. A multi-modal logistic PDF (black dashed-line) can be obtained

by taking convex combination of multiple uni-modal logistic PDFs. By
varying parameters of individual components, shape of fx (x) can be changed
accordingly. (Best viewed in color)

B. Parameter Learning

A Bayesian network is parameterized by {6,}Y . In case
of discrete Bayesian network, these parameters are sim-
ply CPTs. However, for a CBN, CPTs are replaced by
marginal/conditional PDFs.

For each continuous node X; in G, we aim to learn an
arbitrary function &; that takes in values of parents of node X;
and returns parameters 8; of conditional PDF f(X; | pa(X;)).

&t pa(X;) = 0; )

For instance, &; for an LGM will be a function that returns
mean® and standard deviation. Since we assume MoL for
f(X; | pa(X;)), therefore, & will map values in pa(X;) to
{wilm], pi[m], s;lm] }M_, (see (4)). For a node X; having no
parents, i.e. root-node, the function &; will take zero value
as input and return parameters of marginal PDF of X;, i.e.
&: 0 — 6;. In general, &; could be any non-linear function,
therefore, we use neural network to learn this function (see
details in §III).

C. Inference

A parameterized Bayesian network can be used to compute
probability queries of interest. Since we are dealing with
continuous Bayesian network, therefore, probability query of
the following form will be useful for most of the inference
tasks.

Pr[event ‘ evidence] =

Pr[ﬂ(x; <X, <)
iel

N <X, < x;’)] ©6)
jeJ

where Pr represents probability, I is a set denoting indices of
nodes in event and .J is a set denoting indices of nodes in
condition/evidence of probability query. Moreover, (a:; , x;/)
is an interval containing values of node Xj;.

In §IV, we provide an expression to compute probability
query (shown in (6)) using parametric PDFs. In addition to
it, following two subsections give mathematical formulation
of RCA and MIP using causal inference and CBN. These

Slinear combination of the values of parents of node X;

two problems are inspired by their application in corrective
maintenance of industrial manufacturing facilities.

D. Root Cause Analysis (RCA)

As mentioned in §I, the goal of RCA is to identify primary
cause or reason for a failure mode in a process. Many real-
world processes can be modeled using Bayesian networks
[13]. In the context of graph theory, a fault or undesirable
condition is originally initiated by a node, named as root-
cause or source node (X;). Moreover, a node where fault is
detected or observed is being referred to as sink node (X3)
here. Source and sink nodes can be anywhere in graph G and
they do not necessarily have to be one of the root or leaf nodes
respectively.

In general, a process remains in healthy condition for most
of the time, providing many samples of healthy data. At the
occurrence of fault, only a few samples are available in faulty
data. For RCA, we first learn parameters of BN G with healthy
data and then perform following inference task using samples
from faulty data to identify source node.

X, = argmax Pr[ Fault | do(X = xy) ] 7
XeX\{X:}

where X is any node in Bayesian network except the sink
node X; where fault is defined/detected. x ¢ is the value of
node X observed in faulty data. Definition of fault is based
upon a particular range of node X; values e.g. Fault : X; >
10. do() is a do-operator that severs the connections coming
from parents of X towards itself in G and assigns a fixed
value to X. do(X = xy) makes X independent of its parents
and forces this node to operate in its faulty value. Intuitively,
Pr[ Fault | do(X = x¢) ] can be interpreted as probability of
the occurrence of fault when node X is forced to operate in
its faulty value. If this probability turns out to be very high, it
is indicative of X having high contribution in the occurrence
of fault.

E. Most Influential Path (MIP)

RCA gives industrial plant maintainers information about
the primary source of faulti.e. X . Since there may be multiple
directed paths between X and X, therefore, to prioritize
corrective actions on the targeted sequence of nodes, one must
quantify impact of each path (between X, and X,) on the
creation of fault condition. Following inference task will return
sorted list of paths along with their impact. A path with highest
impact is declared as most-influential-path.

Assuming there are K directed paths from X to X; in G
ie. (p, , ke {1,2,---,K}) and let G, be an adjusted/path-
specific Bayesian network for path p,, MIP (denoted as p*)
between X, and X, is found as

p" = argmax Pr, [Fault | do(X;=wz5)] (8)

Py,
ke{1,2, K}

whereas in this case x; represents value of X in faulty data.
Prg, [.] notation indicates that probability is being found with
respect to path-specific Bayesian network Gy, and it quantifies



the effect of do(X, = x¢) —propagated via path p,— on the
occurrence of fault. A path-specific Bayesian network Gy is
obtained by making modifications in original BN G such that
all paths between X, and X, (except p, ) get de-activated. We
adapt the method for the formation of path-specific Bayesian
network from [14]. A more detailed version is provided in
supplementary material (§S4 of [15]).

III. PARAMETER LEARNING WITH NEURAL NETWORKS

Since a neural network acts as a universal function approx-
imator [16], therefore, one can use it to learn an arbitrary
function mentioned in (5). Following are two methods for
parameter learning in a CBN using neural network/s.

A. Multiple Fully-Connected Neural Networks

In this mode of parameter learning, each node X; in G
will have its own fully-connected (FC) neural network, let’s
say NN, (see Fig. 2(a)). Number of neurons or units in
the input-layer of AA; will be equal to the number of
parents of node X; in G. For each root-node, marginal PDF
is estimated and there will be only one unit (holding constant
zero value) at input-layer of its neural network. Number of
hidden layers and number of units in each hidden layer are
hyper-parameters. Number of units in output layer of NN}
will be equal to the number of parameters of conditional PDF
f(X; | pa(X;)) i.e. 6;. Since we are using MoL for each PDF
(see (4)), therefore, output layer will contain M x 3 units where
M is the number of components in the mixture of logistic
PDFs. Loss function of AN, will be local negative log-
likelihood function associated with node X;. Implementation
of loss function for this method and the subsequent one is
similar to that of used by [12], however, we do not use edge
cases because support of random variables in our case is not
confined to [0,255] and we do not expect peaks at the edges
of support. A formal description about the implementation of
loss function can be found in supplementary material (§S1
of [15]). Parameter estimation using multiple neural network
has also been done by [17], however, there are a number of
differences between our approach and that of [17], e.g. we
use MoL for marginal/conditional PDFs which is much more
expressive as compared to uni-modal Gaussian PDF.

B. Single Masked Neural Network

One FC neural network can only be used for density esti-
mation of one child node conditioned on its parents. Although
separate fully-connected neural networks can be trained in
parallel, however, one can also use a single masked-neural
network to learn parameters of PDFs of all nodes in G [18].
It requires masking of fully-connected layers in such a way
that only the parents of a particular child contribute in the
estimation of its probability density parameters at output-layer.

For each layer of masked neural network;

y, = 9(We® M)y, , +b,)

where y, ;, € R” and y, € R™ are input and output
of £y layer respectively. W, € R™*™ is weight matrix,

pa(X;)

Data of Parents of a Child
Node

Parameters of Conditional PDF of Child Node

(means, scales,

0; : Parameters of f( X; | pa(X;))

(a) (b)

Fig. 2. (a) Graphical illustration of parameter learning using multiple separate
fully-connected neural networks. Each node X; will have its own neural
network NA\;. (b) Graphical illustration of parameter learning using single
masked neural network.

M, € {0,1}™>™ is binary mask and b, € R" is bias vector
associated with ¢y, layer. ® is hadamard or point-wise product
and ¢ is a non-linear function.

To maintain dependence of child node only on its parents,
each unit or neuron in neural network is labeled with a tag.
Units in input and hidden layers are labeled with the names of
nodes for which IsParent(X;)=True in G and a dummy node
which is assumed to be hypothetical parent of all root nodes
in G. Value of dummy node is always kept zero so that it may
be mapped to parameters of marginal PDF of root-nodes (see
('5)). Units in output layer are labeled with the names of all
nodes in G i.e. {X1, X, -, XN}

After labeling of all units in neural network, binary masks
are constructed using a method suggested by [18] with slight
modifications. Weight matrix of each layer is multiplied by
a binary mask. For hidden layers and output layer, masks
are constructed according to (9) and (10) respectively. In the
following equations, row index ¢ corresponds to a unit in fy
layer and column index j corresponds to a unit in £ — 1y, layer.

For hidden layers;

MZ[Zaj] = {

1 label of iy, unit is same as that of jy, unit
0 otherwise

©)
For output layer;
1 node corresponding to label of iy, unit
Myli, 5] = is child of jy, unit
0 otherwise
(10)

These masks ensure that parameters of conditional PDF of
node X; are only influenced by its parents pa(X;). During
training, data of the nodes— for which IsParent(X;)=True in
G- are given at the input layer of masked-neural network. The
output layer of masked-neural network provides parameters of
PDFs f(X; | pa(X;) ; 6;) Vi € nodes(G) (see Fig. 2(b)).
In this case, loss function is the sum of all local negative log-
likelihood functions (as shown in (3)).



I'V. INFERENCE USING LEARNED PARAMETRIC PDFS

If a random variable X has logistic PDF i.e. f(X =x) =
logistic(x ; u,s), its CDF is Fx(x) = o((x — u)/s). One
can easily compute probability of X falling in an interval as
follows;

Prlz <X <z ]= f(X =z)dx

= Fx(x”) - FX('r/)

Although there is a closed-form expression for CDF of uni-
variate logistic PDF, however, there is no known analytical
expression for CDF of multi-variate logistic PDF. Therefore,
we adopt a hybrid technique incorporating parametric PDFs
and Monte Carlo approximation to find the answer of proba-
bility query shown in (6).

For the following results, we assume that nodes X =
{X1, X5, -+, Xy} in Bayesian network G are topologically
sorted and follow breadth-first-search (BFS) ordering. Let
p,q be the nodes at deepest level in G among the nodes
indexed by I U J and J respectively i.e. p = max(I U J)
and ¢ = max(J). Moreover, let P and Q be the regions
in RP—! and R?1 defined by Cartes1an product of intervals
{(z), x,)}P_1 and {(z), x; )}9_] respectively. It must be noted
thatif k ¢ I UJ the corresponding interval (z), , ) is assumed
to be (—o0, 400).

Using consequence of probability axioms and learned para-
metric conditional PDFs, following result is derived;

| (ol = X <) | (o] <% <)) =

iel jeJ

Efx

<p

)[1p(p).Pr[(x <X, <w,) | pa(X,) = Wp(p)]}

Byox. L@ P2, X, <) | palX) = mfa)] |
(1T)

where p € RP™! | g € R?I! are drawn from joint
PDFs f(X<p) = f(Xl,X2,~ < ,Xp_l) and f(X<q) =
f(X1,Xa, -+, X4-1) respectively. m,() is a function that
extracts values of node X,'s parents from input vector p.
Expectations in (11) can be approximated using Monte Carlo
method. Detailed derivation of (11) is given in supplementary
material (§S6 of [15]).

V. RESULTS

For quantitative comparison of two uni-variate and multi-
modal logistic PDFs (true: fx and predicted: fX), we use
total-variation-distance (TVD). To calculate TVD, two PDFs
are binned with L uniform intervals and area under each bin
is computed using CDF- resulting in categorical distributions
with L states i.e. fx — Px and f X = PX TVD between Py
and PX is defined as ¢; norm of their element-wise difference
and it is bounded by closed interval [0, 1].

. 1 N
TVD(Px,Px )= ‘PX Sy

1

Fig. 3. A fully-connected Bayesian network over four continuous nodes.

A. Parameter Learning

To present results of parameter learning, we use a Bayesian
network shown in Fig. 3. It has four continuous nodes. Data
generating process (from which train and test data are drawn)
of this network is given in supplementary material (§S5.1 of
[15]). Using the method described in §III-A, we used four
separate neural networks— each having three fully-connected
layers and each layer containing 28 units. We set the number
of mixture components (i.e. M, see (4)) to 5 because we do not
expect conditional PDFs to have more than 5 modes. During
training, a neural network A/; associated with node X; takes
the values of pa(X;) at input layer and outputs parameters of
conditional PDF f(X; | pa(X;)). For instance, input layer of
N N3 has two units for the values (X7, X3) and output layer
has 15 units for parameters of f(X3 | (X7 = x1, X2 = 22))
ie. 03 = {w,[m], iy [ml, 8,[m]}2,_1.

We draw 10,000 samples (of each node) from data gen-
erating process to train neural networks and use RMSprop
optimizer with 1r=0.01 and number of epochs set to 3000.
Once training is complete, we predict conditional PDFs using
test data (drawn from same data generating process). While
generating test data, we also save parameters of conditional
PDFs from which samples are drawn and use them to make
comparison with the predicted ones.

Fig. 4 shows actual and predicted PDFs (obtained through
separate trained neural networks). (a) is marginal PDF of root
node X; and (b,c,d) show conditional PDFs of child nodes
(X2, X3, X4) respectively. For quantitative comparison, refer
to Figs. [5, 6, 7]. Each individual violin-plot shows rotated
kernel density plot of TVD between 50 true and predicted
distributions. We denote approach used in this paper as MoL
(mixture-of-logistic) and compare its results with the ones ob-
tained from linear-Gaussian-model LGM and Discretization’.
Fig. 5 shows TVD between true and predicted distributions of
each node. It can be observed that TVD for MoL approach
remains lower as compared to other two methods. Moreover,
we also show the performance of these three methods w.r.t
number of nodes in Bayesian network and number of samples
in training data in Fig. 6 and Fig. 7 respectively. These results
suggest that MoL approach has clear advantages over other
two methods.

Parameter learning results obtained using single masked
neural network are quite similar to the ones obtained via
multiple separate fully-connected neural networks. Due to

7In this approach, data of all continuous nodes are converted into discrete
data and then discrete Bayesian network is parameterized by CPTs.
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Fig. 4. Actual and predicted PDFs associated with the nodes of Bayesian network shown in Fig. 3. Visual inspection indicates that predictions are quite close
to actual parameters. For quantitative comparison, we use TVD between two distributions.

space constraint, we have shown results of masked neural
network in supplementary material (§S7 of [15]).

For results shown in Fig. 8, a two-node continuous Bayesian
network is assumed with X being the parent of node Y. Left
scatter plot shows samples drawn from actual distribution. We
use same MoL approach and LGM method on this data and
draw samples from learned models.

Violin-Plot of TVD between True and Estimated Distributions
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Fig. 5. Violin-plot of TVD vs. each node in Bayesian network. Horizontal
bar represents mean value of corresponding kernel density plot.
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Fig. 6. Violin-plot of TVD vs. number of nodes in Bayesian network.

Horizontal bar represents mean value of corresponding kernel density plot.
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Fig. 8. For this g\raph, a two node Bayesirzm network {X — Y} ig considered.
Left scatter plot shows samples drawn from actual distribution. Middle and
right plots show samples drawn using MoL approach and LGM respectively.
LGM samples are quite different from the ones present in actual distribution.

B. Inference

In this section, we will show results of inference query
(derived in §1V), RCA and MIP. Referring to Bayesian network
shown in Fig. 3, we compute answers of nine different prob-
ability queries using expression shown in (11) and parametric
PDFs obtained via trained neural networks. Since ground-truth
is not available in the form of analytical closed-form expres-
sion, we compare our results with empirical® probabilities ob-
tained using 5000 samples of test data. Fig. 9 shows empirical
probabilities and estimated probabilities (computed according
to (11)) of nine inference queries. Estimated probabilities agree
with the empirical probabilities by an acceptable margin.

Empirical and Estimated Probabilities

—@- Empirical Probability
~@- Estimated Probability

100

80

60

40

Probability (%)

20

6 7 8 9

4 5
it™" Query (i € {1,2,...9})

1 2 3

Fig. 9. Empirical and estimated probabilities of nine inference queries e.g.
9 query is Pr[(—30 < X4 < 1)&(—-15 < X3 <0) | (-15< X1 <
15)&(—15 < X2 < 15)].

Root Cause Analysis (RCA) and MIP

We demonstrate RCA and MIP using a thirteen node
continuous Bayesian network shown in Fig. 10. Data generat-

No. of Samples in Event & Evidence
No. of Samples in Evidence

8Empirical probability is obtained by
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Fig. 10. A Bayesian network over thirteen continuous nodes. X13 is sink
node where fault is defined/detected.

ing process of this network is given in supplementary material
(§S5.2 of [15]). We define fault condition on node X;3 and
consider it to be sink node i.e. X; = X;3. Fault is defined as
an event in which the value of node X3 exceeds 120 i.e.

Fault : X153 > 120

1) Root Cause Analysis (RCA): For RCA, we generate
healthy data (i.e. with no fault observed in data) and train
13 full-connected neural networks using the method described
in §III-A with this healthy data. While generating faulty
or test data (i.e. the samples in which value of node X3
exceeds 120), we perform an intervention on one of the
nodes {X;,Xo, -+, Xj2}. Then we perform inference task
mentioned in §II-D. We present RCA results for only two
situations here: In first case, actual root-cause node is X5 and
in second case, actual root-cause node is Xy4.

There are two possibilities for the root-cause node X:

(a) The X is directly connected to X; in G
(b) One or more nodes are present in the path/s originating
from X, and ending at X,

In case (a), only actual source node will have high inter-
ventional® probability and program in (7) will return correct
root-cause node. For instance, Fig. 11 shows interventional
probabilities when ground-truth root-cause node is X5. As
we can see that X5 is the only one with significantly high
interventional probability. If case (b) arises, node X, and a few
of its descendants may have high interventional probability and
it is quite possible that interventional probabilities of some of
these descendants are greater than that of actual root-cause
node. To handle such case, one needs to list all the nodes
whose interventional probabilities are greater than a certain
threshold, explore their levels in the graph and then declare
root-cause node that is at highest'” level. We show results of
such cases in supplementary material (§S3 of [15]).

Fig. 12 shows interventional probabilities when ground-truth
root-cause node is X,. It must be noted that descendants of
X, are also having high interventional probability.

2) Most Influential Path (MIP): Once source node X, has
been determined using RCA, next step is to find MIP between
X, and X;. For MIP, we take the case in which X, = Xj.

We refer probability of an event computed under do() operation to as
interventional probability.
10the closer to the root nodes, the higher the level

100 Interventional Probabilities for RCA

1 (%)

80

60

Pr[ Fault | do(X = zy)

X1 X Xz Xy X5 Xo X7 Xg Xy Xy Xu Xpo
Nodes

0

Fig. 11. RCA result for the case in which X5 is the actual root-cause node
which is directly connected to sink node X in Bayesian network shown in
Fig. 10.

100 Intﬁrventlonal Probabilities for RCA
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Nodes
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Fig. 12. RCA result for the case in which X} is the actual root cause. There
are multiple nodes between X4 and X3 in Bayesian network shown in Fig.
10.

There are two paths between X and X;: p; = {Xy — X7 —
; X11 = Xi0 — Xi2 — Xy} and po = { Xy — Xg — Xi3}
. Since data are being generated synthetically, therefore, we set
equations in such a way that contribution of path p; remains
higher as compared to that of p,. As mentioned in §II-E, we
create an adjusted/path-specific Bayesian network G, for each
path and then find the probability of Fault condition under
do operation on the value of X, taken from faulty data (see
(8)). Resulting probabilities give us path-specific impacts on
the fault. In this case, we get following probabilities:

Pr, [ Fault | do(X =xy) ] =63 %
Pry [ Fault | do(Xs =) ] =35 %

Since Pr, [¥] > Prg, [+, therefore, p; is declared as MIP
which is according to our expectation. It must be noted that
path-specific probabilities are calculated independently and
they need not sum to one.

VI. CONCLUSION

We presented two simple methods for parameter learning
in continuous Bayesian network using neural network/s. A
method to compute probability query using learned parametric
PDFs and Monte Carlo approximation is also presented. More-
over, mathematical formulation and demonstration of RCA and
MIP on synthetic data (using continuous Bayesian network
and causal inference) have been given. We believe that unified
presentation of parameter learning using neural network/s and
causal inference methods for fault diagnosis in this paper



can help practitioners, especially the ones working on the
corrective maintenance of industrial manufacturing plants.
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